
Covered chapters

Probability Theory
These formulas deal with the fundamental concepts of probability.

Addition Rule for Two Events

Addition Rule for Three Events

Multiplication Rule (Conditional Probability)

Law of Total Probability and Bayes' Theorem

Random Variables and Distributions
These formulas define properties and approximations for random variables.

2.1 - 2.7, 2.9
3.1 - 3.3, 3.5, 3.6
4.1 - 4.7
5.1, 5.2, 5.4, 5.6
6.1 - 6.4, 6.7
7.1 - 7.3
8.1 - 8.2, 8.4
9.1 - 9.3, 9.5
10.2
11.1 - 11.7
13.2

Formula: P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

Explanation: This formula calculates the probability of event A or event B occurring. It's the sum of their individual probabilities minus
the probability of both A and B occurring, to avoid double-counting their intersection.
When to use: When you want to find the probability that at least one of two events occurs. If events A and B are mutually exclusive (they
cannot both happen at the same time), then P(A ∩ B) = 0, and the formula simplifies to P(A ∪ B) = P(A) + P(B).

Formula: P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A ∩ B) − P(A ∩ C) − P(B ∩ C) + P(A ∩ B ∩ C)

Explanation: This extends the addition rule to three events. It accounts for the probabilities of single events, subtracts the probabilities of
pairwise intersections, and then adds back the probability of the intersection of all three events to correct for over-subtraction.
When to use: When you want to find the probability that at least one of three events occurs.

Formula: P(A ∩ B) = P(A ∣ B)P(B)

Explanation: This formula relates the probability of both A and B occurring to the conditional probability of A given B, and the
probability of B. P(A ∣ B) is the probability of event A happening, given that event B has already happened.
When to use:

To find the probability that two events both occur.
To calculate conditional probabilities if you know P(A ∩ B) and P(B), as P(A ∣ B) = P(A ∩ B)/P(B).

Formulas:
P(A) = ∑p

i=1 P (A ∣ Bi)P (Bi)

P (B1 ∣ A) =
P(A∣B1)P(B1)
∑P(A∣Bi)P(Bi)

Explanation:
Law of Total Probability: If B1, … ,Bp form a partition of the sample space (meaning they are mutually exclusive and collectively
exhaustive), this formula states that the probability of event A can be found by summing the probabilities of A occurring under each
of the Bi conditions, weighted by the probability of each Bi.
Bayes' Theorem: This formula allows you to update the probability of an event (B1) given new evidence (event A). It calculates the
posterior probability P(B1 ∣ A) using the prior probability P(B1) and the likelihood P(A ∣ B1), normalized by the total probability of
A.

When to use:
Law of Total Probability: When you need to find the overall probability of an event (A) that can occur under several different,
mutually exclusive scenarios (Bi).
Bayes' Theorem: When you want to reverse the conditioning – to find the probability of a cause (B1) given an observed effect (A),
especially useful in medical diagnosis, spam filtering, and machine learning.
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Cumulative Distribution Function (CDF)

Expectation (Mean) and Variance

Normal Approximation to the Binomial Distribution

Expected Value of a Function of Two Random Variables

Marginal Probability Distribution

Conditional Probability Distribution

Correlation Coefficient

Formula: F(x) = P(X ≤ x) = {
∑u≤x f(u)  discrete 

∫ x

−∞ f(u)du  continuous 

Explanation: The CDF gives the probability that a random variable X takes on a value less than or equal to x.
For discrete random variables, it's the sum of the probability mass function (pmf) for all values u less than or equal to x.
For continuous random variables, it's the integral of the probability density function (pdf) from negative infinity up to x.

When to use: To find probabilities of the form P(X ≤ x), P(X > x) = 1 − P(X ≤ x), or P(a < X ≤ b) = F(b) − F(a).

Formulas:

μ = {
∑x xf(x)  discrete 

∫ ∞
−∞ xf(x)dx  continuous 

σ2 = {
∑x x

2f(x) − μ2  discrete 
∫ ∞

−∞ x2f(x)dx − μ2  continuous 

Explanation:
μ (expectation or mean): The average value of a random variable. It's a measure of central tendency.
σ2 (variance): A measure of the spread or dispersion of a random variable around its mean. A larger variance means the values are
more spread out. The second formula for variance is often called the "computational formula" and can be easier to use.

When to use:
To calculate the expected value (average) of a random variable.
To quantify the variability of a random variable.

Formula: If X ∼ Binomial(n, p) for large n, then P(X = x) ≈ Φ( x+0.5−np

√np(1−p)
) − Φ( x−0.5−np

√np(1−p)
) where Φ(z) is the cdf of the Normal(0, 1).

Explanation: For a large number of trials (n), the discrete Binomial distribution can be approximated by the continuous Normal
distribution. The 0.5 adjustments are called continuity corrections, which are necessary when approximating a discrete distribution with a
continuous one. np is the mean and np(1 − p) is the variance of the Binomial distribution.
When to use: When calculating probabilities for a Binomial random variable with a large n (typically np ≥ 5 and n(1 − p) ≥ 5), as
calculating individual binomial probabilities can become computationally intensive. This approximation uses the standard normal CDF (Φ
) to find the probability of X = x. For P(X ≤ x), you would use Φ( x+0.5−np

√np(1−p)
).

Formula: E[h(X,Y )] = {
∑x∑y h(x, y)fX,Y (x, y)  discrete 

∫ ∞
−∞ ∫ ∞

−∞ h(x, y)fX,Y (x, y)dxdy  continuous 

Explanation: This formula calculates the expected value of a function h(X,Y ) of two random variables X and Y . It's a weighted average of
the function's values, where the weights are the joint probabilities (for discrete) or joint probability densities (for continuous).
When to use: To find the average value of a quantity that depends on two random variables, such as E[XY ] or E[X + Y ].

Formula: fX(x) = {
∑y fX,Y (x, y)  discrete 

∫ ∞
−∞ fX,Y (x, y)dy  continuous 

Explanation: The marginal probability distribution of X (or Y ) is the probability distribution of a single random variable in a joint
distribution. It is obtained by "summing out" (for discrete) or "integrating out" (for continuous) the other variable from the joint
probability function.
When to use: To find the probability distribution of one random variable when you are given their joint probability distribution.

Formula: fY ∣X(y ∣ x) =
fX,Y (x,y)

fX(x)

Explanation: This formula defines the conditional probability distribution of Y  given a specific value of X. It's the ratio of the joint
probability distribution of X and Y  to the marginal probability distribution of X. It tells you how Y  behaves when X is fixed at a certain
value.
When to use: To understand the relationship between two random variables and how the probability of one changes given knowledge of
the other.

Formula: ρX,Y =
Cov(X,Y )

√V (X)V (Y )
=

E(XY )−μXμY

√V (X)V (Y )

Explanation: The correlation coefficient ρX,Y  measures the strength and direction of the linear relationship between two random
variables X and Y . It ranges from -1 to 1.

ρX,Y = 1: Perfect positive linear relationship.
ρX,Y = −1: Perfect negative linear relationship.
ρX,Y = 0: No linear relationship (though they might have a non-linear relationship).
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Independent Variables Properties

Expectation and Variance of a Linear Combination of Random Variables

Linear Combination of Independent Normal Random Variables

Descriptive Statistics

These formulas are used to summarize and describe sample data.

Sample Mean and Sample Variance

Central Limit Theorem

Cov(X,Y ) = E(XY ) − μXμY  is the covariance, which indicates the direction of the linear relationship, but its magnitude is affected
by the scales of X and Y . The correlation coefficient normalizes this by dividing by the product of the standard deviations.

When to use: To quantify the linear association between two random variables.

Formula: If X and Y  are independent then E[h(X)g(Y )] = E[h(X)]E[g(Y )] and ρX,Y = 0.
Explanation: If two random variables are independent, knowing the value of one provides no information about the value of the other.

The expected value of the product of functions of independent variables is the product of their individual expected values.
Their correlation coefficient is 0 (no linear relationship). Important: ρX,Y = 0 only implies no linear relationship, not necessarily
independence. However, if X and Y  are independent, then ρX,Y = 0.

When to use: When dealing with independent random variables, these properties simplify calculations involving expectations and allow
you to conclude no linear correlation.

Formulas:
If Y = c0 + c1X1 + ⋯ + cpXp then E(Y ) = c0 + ∑p

1 ciμi

Var(Y ) = ∑p
1 c

2
iσ

2
i + 2∑∑i<j cicj Cov (Xi,Xj)

Explanation:
Expectation: The expected value of a linear combination of random variables is the linear combination of their individual expected
values. The constant c0 is simply added.
Variance: The variance of a linear combination of random variables involves the sum of the squared coefficients times their
individual variances, plus twice the sum of products of coefficients and covariances for all unique pairs of variables. If the variables
are independent, all Cov(Xi,Xj) = 0 for i ≠ j, simplifying the formula.

When to use: To calculate the mean and variance of a new random variable that is formed by a weighted sum of other random variables.
This is very common in portfolio theory, error propagation, and statistical modeling.

Formula: If X1, … ,Xn are independent with Xi ∼ Normal (μi,σ
2
i ) then Y = c0 + c1X1 + ⋯ + cnXn is normal with μY = c0 + ∑n

1 ciμi and
σ2
Y = ∑n

1 c
2
iσ

2
i .

Explanation: A special and very useful property of normal distributions: any linear combination of independent normal random variables
is itself normally distributed. The mean and variance follow the general rules for linear combinations, with the covariance terms dropping
out due to independence.
When to use: When working with sums or differences of independent normally distributed quantities. This property is crucial for many
statistical tests and confidence intervals that rely on normal theory.

Formulas:
x̄ = 1

n
∑xi

s2 = 1
n−1 ∑ (xi − x̄)2 = 1

n−1 (∑x2
i − nx̄2)

Explanation:
Sample Mean (x̄): The average of a set of observed data points. It is an estimator for the population mean (μ).
Sample Variance (s2): A measure of the dispersion of observed data points around the sample mean. The (n − 1) in the denominator
(Bessel's correction) makes s2 an unbiased estimator of the population variance (σ2). The second form is a computational formula that
can be easier to calculate by hand.

When to use: To calculate descriptive statistics for a sample of data:
x̄ for the central tendency.
s2 for the variability.
s = √s2 for the sample standard deviation.

Formula: X1, … ,Xn independent with E (Xi) = μ and V (Xi) = σ2 < ∞ then the distribution of Z =
X̄−μ

σ/√n
 approaches a standard normal as

n → ∞.
Explanation: The Central Limit Theorem (CLT) is a cornerstone of statistics. It states that, regardless of the original distribution of the
random variables Xi, the distribution of the sample mean (X̄) will approach a normal distribution as the sample size (n) becomes large.
The standardized sample mean Z will approach a standard normal distribution (Normal(0, 1)).
When to use:
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Confidence Intervals and Test Statistics

These sections provide formulas for constructing confidence intervals and calculating test statistics for various hypothesis tests. The choice
of formula depends on the parameters being estimated/tested, assumptions about the population, and sample size.

General Notation

Normal Mean, σ2 Known

Non-Normal Mean, σ2 Known, Large Sample (n ≥ 30)

Large Sample Mean, σ2 Unknown

Normal Mean, σ2 Unknown

Proportion, p (Large Sample)

Sample Size Determination
These formulas help determine the required sample size to achieve a desired level of precision or power for a hypothesis test.

Normal Mean, σ2 Known (for Margin of Error)

To justify using normal distribution theory for confidence intervals and hypothesis tests involving sample means, even if the
underlying population distribution is not normal (provided n is sufficiently large, typically n ≥ 30).
Understanding why many natural phenomena that are the result of many small, independent effects tend to be normally distributed.

∼ means "is distributed as"
∼̇ means "is approximately distributed as"
zα/2 and zα: Z-scores from the standard normal distribution corresponding to a given significance level α.
tν;α/2 and tν: T-scores from the t-distribution with ν degrees of freedom corresponding to a given significance level α.

Confidence Interval (CI): x̄ ± zα/2σ/√n

Test Statistic: Z0 =
√n(X̄−μ0)

σ ∼ Normal(0, 1)

When to use: When you are working with a sample mean from a normally distributed population, and you know the population standard
deviation (σ). This is a rarer situation in practice, but forms the theoretical basis for other cases.

Confidence Interval (CI): x̄ ± zα/2σ/√n

Test Statistic: Z0 =
√n(X̄−μ0)

σ
∼̇ Normal(0, 1)

When to use: When you have a large sample (typically n ≥ 30), know the population standard deviation (σ disputes assumption that X
approx normal for large n), and the population may not be normally distributed. The Central Limit Theorem allows us to use the normal
approximation here.

Confidence Interval (CI): x̄ ± zα/2s/√n

Test Statistic: Z0 =
√n(X̄−μ0)

S
∼̇ Normal(0, 1)

When to use: When you have a large sample (typically n ≥ 30), and the population standard deviation (σ) is unknown, so you use the
sample standard deviation (s) as an estimate. Due to the large sample size, we can still approximate the distribution of the test statistic as
normal.

Confidence Interval (CI): x̄ ± tn−1;α/2s/√n

Test Statistic: T0 =
√n(X̄−μ0)

S ∼ tn−1

When to use: When you have a sample from a normally distributed population, and the population standard deviation (σ) is unknown,
regardless of sample size. In this case, we use the t-distribution with n − 1 degrees of freedom, which accounts for the extra variability
introduced by estimating σ with s. This is a very common scenario.

Confidence Interval (CI): p̂ ± zα/2√p̂(1 − p̂)/n

Test Statistic: Z0 =
√n(p̂−p0)
√p0(1−p0)

∼̇ Normal(0, 1)

When to use:
CI: To estimate a population proportion (p) based on a sample proportion (p̂) when the sample size is large enough (e.g., np̂ ≥ 5 and
n(1 − p̂) ≥ 5).
Test Statistic: To test a hypothesized value of a population proportion (p0) using a large sample. Note that for the test statistic, p0 is
used in the denominator, while for the confidence interval, p̂ is used.

Formula: n ≥ ( zα/2σ

E
)

2

Explanation: This formula calculates the minimum sample size (n) required to estimate the population mean (μ) with a specified margin
of error (E) and confidence level (1 − α), assuming the population standard deviation (σ) is known.
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Proportion, p (for Margin of Error)

Normal Mean, μ (for Specified Error Probabilities)

Two-Sample Confidence Intervals and Test Statistics

These formulas are used to compare the means of two populations.

Difference in Means (μ1 − μ2), Normal, Common σ2

Difference in Means (μ1 − μ2), Normal (Unequal Variances)

Difference in Means (μD = μ1 − μ2), Paired Data

Regression Analysis

These formulas are central to simple linear regression, which models the linear relationship between a dependent variable (Y ) and an
independent variable (X).

Sums of Squares for Regression

When to use: When designing a study and you need to determine how many samples to collect to achieve a specific precision for a mean
estimate, and you have some prior knowledge or estimate of σ.

Formula: n ≥ ( zα/2

E
)2
p∗ (1 − p∗)

Explanation: This formula calculates the minimum sample size (n) required to estimate a population proportion (p) with a specified
margin of error (E) and confidence level (1 − α). p∗ is a prior estimate of the population proportion. If no prior estimate is available, using
p∗ = 0.5 will yield the largest conservative sample size.
When to use: When designing a study to estimate a proportion with a certain level of precision.

Formulas:

2-tailed: n ≥ ( (zα/2+zβ)σ
μ−μ0

)
2

1-tailed: n ≥ ( (zα+zβ)σ
μ−μ0

)
2

Explanation: These formulas determine the sample size needed to achieve specified Type I error probability (α) and Type II error
probability (β) for a hypothesis test about a normal mean. μ0 is the hypothesized mean under the null hypothesis, and μ is the true mean
under the alternative hypothesis. zβ is the Z-score corresponding to the Type II error probability β.
When to use: When planning a hypothesis test for a mean, and you want to ensure sufficient statistical power to detect a specific
difference (μ − μ0) with given error rates.

Confidence Interval (CI): (x̄1 − x̄2) ± tα/2,n1+n2−2√s2
p ( 1

n1
+ 1

n2
)

Test Statistic: T0 = X̄1−X̄2−Δ0

√S 2
p( 1

n1
+ 1

n2
)

∼ tn1+n2−2 where S 2
p =

(n1−1)S 2
1 +(n2−1)S 2

2

n1+n2−2

Explanation: This is for comparing two population means when both populations are assumed to be normally distributed and have the
same (but unknown) variance (σ2). S 2

p  is the pooled sample variance, which is a weighted average of the two sample variances. Δ0 is the
hypothesized difference in means (often 0 for testing equality). The t-distribution with n1 + n2 − 2 degrees of freedom is used.
When to use: When comparing two means where the normal assumption holds and you believe the population variances are equal (e.g.,
based on prior knowledge or an F-test for equality of variances).

Confidence Interval (CI): (x̄1 − x̄2) ± tα/2,ν√
s2

1
n1

+
s2

2
n2

Test Statistic: T0 = X̄1−X̄2−Δ0

√ s2
1

n1
+

s2
2

n2

∼̇tν where ν =
(s2

1/n1+s2
2/n2)

2

(s2
1/n1)

2

n1−1 +
(s2

2/n2)
2

n2−1

Explanation: This is for comparing two population means when both populations are assumed to be normally distributed but have
unequal (and unknown) variances. This is often called Welch's t-test. The degrees of freedom (ν) are calculated using a more complex
formula (Satterthwaite's approximation), and will generally not be an integer.
When to use: When comparing two means where the normal assumption holds, but you cannot assume equal population variances.

Confidence Interval (CI): d̄ ± tα/2,n−1
sD
√n

Test Statistic: D̄−Δ0

SD/√n
∼ tn−1 (Di = X1i − X2i)

Explanation: This is for paired data, where each observation in one sample is naturally linked to an observation in the other sample (e.g.,
before-and-after measurements on the same subject, or measurements on identical twins). We calculate the difference (Di) for each pair
and then perform a one-sample t-test on these differences. D̄ is the sample mean of the differences, and SD is the sample standard
deviation of the differences.
When to use: When you have paired observations and want to test if there is a significant difference between the two conditions or
treatments. This design effectively reduces variability.

Formulas:
Sxx = ∑n

i=1 (xi − x̄)2
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Regression Coefficients

Sums of Squares in Regression (ANOVA context)

Estimated Variance of Errors and Coefficient of Determination

Standard Error and Inference for β̂1

Confidence Interval for Mean Response

Sxy = ∑n
i=1 (xi − x̄) (yi − ȳ)

Syy = ∑n
i=1 (yi − ȳ)2

Explanation: These are fundamental sums of squares used in linear regression:
Sxx: Sum of squared deviations of x values from their mean, related to the variability of X.
Sxy: Sum of products of deviations of x and y values from their respective means, related to the covariance between X and Y .
Syy: Sum of squared deviations of y values from their mean, related to the total variability of Y .

When to use: These are intermediate calculations necessary for estimating regression coefficients and calculating other regression
statistics.

Formulas:
β̂1 =

Sxy

Sxx

β̂0 = ȳ − β̂1x̄

Explanation: These are the least squares estimates for the slope (β̂1) and y-intercept (β̂0) of the regression line (y = β̂0 + β̂1x).
β̂1: Represents the estimated change in Y  for a one-unit increase in X.

β̂0: Represents the estimated value of Y  when X = 0.

When to use: To find the equation of the best-fit straight line that describes the linear relationship between X and Y  in your sample data.

Formulas:
SST = ∑ (yi − ȳ)

2 (Total Sum of Squares)
SSE = ∑(yi − ŷi)

2
= Syy − β̂1Sxy (Error Sum of Squares or Residual Sum of Squares)

SSR = ∑(ŷi − ȳ)2 (Regression Sum of Squares or Explained Sum of Squares)

Explanation: These sums of squares decompose the total variation in the dependent variable (Y ) into parts explained by the regression
model and parts due to random error.

SST : Total variation in Y .
SSE: Variation in Y  not explained by the regression model (residuals).
SSR: Variation in Y  explained by the regression model.
Relationship: SST = SSR + SSE.

When to use: To understand how much of the variability in the dependent variable is accounted for by the independent variable. These
are used in ANOVA tables for regression.

Formulas:
σ̂2 = SSE/(n − 2)

R2 = SSR

SST
= 1 − SSE

SST

Explanation:
σ̂2: The estimated variance of the random errors (ϵi) in the regression model. It's calculated by dividing the error sum of squares by its
degrees of freedom (n − 2, because two parameters, β0 and β1, are estimated).
R2 (Coefficient of Determination): Represents the proportion of the total variation in the dependent variable (Y ) that is explained by
the independent variable (X) in the regression model. It ranges from 0 to 1. A higher R2 indicates a better fit of the model to the data.

When to use: σ̂2 is used for calculating standard errors of regression coefficients and for confidence/prediction intervals. R2 is used to
assess the overall goodness-of-fit of the regression model.

Formulas:

se(β̂1) = √ σ̂2

Sxx

CI: β̂1 ± tα/2,n−2 se(β̂1)

Test Statistic: β̂1−β1,0

se(β̂1)
∼ tn−2 if β1 = β1,0

Explanation:
se(β̂1): The standard error of the estimated slope coefficient. It measures the precision of the slope estimate.
Confidence Interval: Provides a range within which the true population slope (β1) is likely to lie with a certain confidence level.
Test Statistic: Used to test a hypothesis about the true population slope (β1), often against a null hypothesis that β1 = 0 (i.e., no linear
relationship between X and Y). The test statistic follows a t-distribution with n − 2 degrees of freedom.

When to use: To perform inference (confidence intervals and hypothesis tests) on the slope coefficient in simple linear regression.

Formula: β̂0 + β̂1x0 ± tα/2,n−2σ̂√ 1
n

+
(x0−x̄)2

Sxx
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Prediction Interval for a New Observation

Analysis of Variance (ANOVA)
ANOVA is used to compare means across two or more groups. The formulas here typically refer to a One-Way ANOVA.

Sums of Squares for ANOVA

Pooled Variance Estimate

F-Test Statistic for ANOVA

Fisher's LSD Test (Least Significant Difference) and CI

Explanation: This interval estimates the mean (average) value of Y  for a specific value of X, say x0. It's narrower than the prediction
interval because we are estimating a mean, not a single observation.
When to use: When you want to estimate the average outcome of Y  for a given X value, for example, the average blood pressure for all
individuals with a certain dosage of medication.

Formula: β̂0 + β̂1x0 ± tα/2,n−2σ̂√1 + 1
n +

(x0−x̄)2

Sxx

Explanation: This interval predicts the value of a single new observation of Y  for a specific value of X, say x0. It's wider than the
confidence interval for the mean response because it accounts for both the uncertainty in the regression line and the inherent variability
of individual observations.
When to use: When you want to predict a single future outcome of Y  for a given X value, for example, the blood pressure of a new
individual with a certain dosage.

Formulas:
SST = ∑a

i=1 ∑
n
j=1 (yij − ȳ..)

2 (N − 1 d.f.) (Total Sum of Squares)
SSE = ∑a

i=1 ∑
n
j=1 (yij − ȳi.)

2 (N − a d.f.) (Error Sum of Squares)
SSTr = ∑a

i=1 n(ȳi. − ȳ..)
2 (a − 1 d.f.) (Treatment Sum of Squares)

Relationship: SST = SSTr + SSE

Explanation: These sum of squares decompose the total variation in the data (SST ) into variation due to differences between group means
(SSTr) and variation within groups (random error, SSE).

yij: j-th observation in the i-th group.
ȳi. : Mean of the i-th group.
ȳ..: Overall mean of all observations.
a: Number of groups (treatments).
n: Number of observations per group (assuming equal sample sizes per group here, N = a × n).
N : Total number of observations.

When to use: These are preliminary calculations for conducting an ANOVA test.

Formula: σ̂2 = SSE/(N − a) = (s2
1 + ⋯ + s2

a)/a.
Explanation: This is the estimated common variance within all groups (σ2), often called Mean Squared Error (MSE). It is an average of the
sample variances from each group, assuming the population variances are equal across groups.
When to use: In ANOVA, this is used as the denominator in the F-test statistic and for post-hoc comparisons.

Formula: F0 =
SSTr/(a−1)
SSE/(N−a) ∼ Fa−1,N−a if all means are equal.

Explanation: The F-statistic is the ratio of Mean Square Treatment (MSTr = SSTr/(a − 1)) to Mean Square Error (MSE = SSE/(N − a)). If
the null hypothesis (that all group means are equal) is true, this ratio follows an F-distribution with a − 1 numerator degrees of freedom
and N − a denominator degrees of freedom. A large F-value suggests significant differences between group means.
When to use: To test the null hypothesis that there are no statistically significant differences between the means of two or more groups.

Formulas:

LSD = tα/2,N−a√MSE( 1
n1

+ 1
n2
)

CI: ȳi. − ȳj. ± LSD

Explanation: Fisher's LSD is a post-hoc test used after a significant F-test in ANOVA. It compares all possible pairs of group means to
determine which specific pairs are significantly different. The LSD value provides a threshold; if the absolute difference between two
group means exceeds the LSD, the difference is considered statistically significant. The confidence interval provides an estimate for the
true difference between two specific group means.
When to use: After conducting an ANOVA and rejecting the null hypothesis (meaning at least one group mean is different), you use post-
hoc tests like LSD to identify which specific group means differ from each other. Note that Fisher's LSD is prone to an inflated Type I
error rate when many comparisons are made; other post-hoc tests like Tukey's HSD or Bonferroni correction are often preferred for
multiple comparisons.
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Some Important Probability Distributions

This section summarizes common probability distributions, their probability mass/density functions, and their mean and variance.

Distribution Probability mass or density function E(X) V (X) When to Use

Binomial (n, p) f(x) = (n
x
)px(1 − p)n−x, x = 0, 1, … ,n np np(1 − p) For the number of successes in a fixed number of 

independent Bernoulli trials. E.g., number of heads 
in 10 coin flips.

Geometric (p) f(x) = p(1 − p)x−1, x = 1, 2, … 1
p

1−p
p2 For the number of Bernoulli trials needed to get 

the first success. E.g., number of attempts until 
first success in a game.

Negative 
Binomial (r, p)

f(x) = (x−1
r−1)(1 − p)x−rpr, x = r, r + 1, … r

p
r(1−p)

p2 For the number of Bernoulli trials needed to get 
the r-th success. E.g., number of sales calls until 
5th successful sale.

Hypergeometric 
(K,N ,n) f(x) =

( )( )

( )
, 

x = max(0,n + K − N), … , min(n,K)

np np(1 − p) ( N−n
N−1 ) For the number of successes in a sample drawn 

without replacement from a finite population. E.g., 
number of defectives in a sample of 10 from a 
batch of 100 with 20 defectives.

Poisson (λ) f(x) = λxe−λ

x! , x = 0, 1, … λ λ For the number of events occurring in a fixed 
interval of time or space if these events occur with 
a known average rate (λ) and independently of the 
time since the last event. E.g., number of phone 
calls received per hour at a call center.

Exponential (λ) f(x) = λe−λx, x ≥ 0 1
λ

1
λ2 For the time until the next event in a Poisson 

process. It is a continuous distribution. E.g., time 
between customer arrivals.

Normal (μ,σ2) f(x) = 1

σ√2π
e−(x−μ)2/(2σ2), −∞ < x < ∞ μ σ2 For continuous data that clusters around a central 

value with symmetrical tails. Many natural 
phenomena are approximately normally 
distributed. Foundational for half of the Test 2 stuff.

K

x

N−K

n−x

N

n
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